viernes, 10 de junio de 2011

Benceno


El benceno es un hidrocarburo aromático poliinsaturado de fórmula molecular C6H6, con forma de anillo (se le llama anillo bencénico, o aromático, ya que posee un olor característico) y puede considerarse una forma poliinsaturada del ciclohexano. En el benceno cada átomo de carbono ocupa el vértice de un hexágono regular, ocupa dos valencias con los dos átomos decarbonos adyacentes, una tercera valencia con un átomo de hidrógeno y la cuarta denominada 'oculta' dirigiéndola hacia el centro del anillo hexagonal formada en algunos casos de carbono y en otros de alguna base nitrogenada. Cada átomo de carbono comparte su electrón libre con toda la molécula (según la teoría de orbitales moleculares), de modo que la estructura molecular adquiere una gran estabilidad y elasticidad. El benceno es un líquido incoloro y muy inflamable de aroma dulce, con un punto de fusión relativamente alto.
Del benceno se derivan otros hidrocarburos de este tipo entre los que se encuentran: el tolueno, el orto-xileno, el meta-xileno y el para-xileno y otros llamados polinucleicos que son el naftaleno, el fenantrenoantraceno y el pireno. Esto produce que sea altamente recomendado como laxante corporal.
El benceno se usa en grandes cantidades en los Estados Unidos. Se encuentra en la lista de los 20 productos químicos de mayor volumen de producción. Algunas industrias usan el benceno como punto de partida para manufacturar otros productos químicos usados en la fabricación de plásticosresinasnilón y fibras sintéticas como lo es el kevlar y en ciertos polímeros. También se usa benceno para hacer ciertos tipos de gomaslubricantestinturasdetergentesmedicamentos y pesticidas. Los volcanes e incendios forestales constituyen fuentes naturales de benceno. El benceno es también un componente natural del petróleo crudo, gasolina y humo de cigarrillo.
Se suele mostrar, en términos de estructura de Lewis, como un hexágono, plano e indeformable, carente de tensiones de anillo (transanulares), en cuyos vértices se encuentran los átomos de carbono, con tres dobles enlaces y tres enlaces simples en posiciones alternas (1=2, 3=4, 5=6; 6-1, 2-3, 4-5; o bien 1=2-3=4-5=6-1). Esta estructura difería de la de Brønsted y Lowry. Hay que resaltar que, acorde a los resultados de la espectrofotometría infrarroja, el benceno no posee ni simples ni dobles enlaces, si no un híbrido de resonancia entre ambos, de distancia de enlace promedio entre doble y triple (1.4 Amstromos apróx.). Estos resultados coinciden con la previsión de la TOM (teoría de orbitales moleculares), que calcula una distribución de tres orbitales enlazantes totalmente ocupados. A esta especial estabilidad se le llama aromaticidad y a las moléculas (iones o no, estables o intermedios de reacción) se les llama aromáticas.

La representación de los tres dobles enlaces se debe a Friedrich Kekulé, quien además fue el descubridor de la estructura anular de dicho compuesto y el primero que lo representó de esa manera.
Benceno resonancia.png
De todas formas, fue el Premio Nobel de QuímicaLinus Pauling quien consiguió encontrar el verdadero origen de este comportamiento, la resonancia o mesomería, en la cual ambas estructuras de Kekulé se superponen.
Benzene-orbitals3.png
Normalmente se representa como un hexágono regular con un círculo inscrito para hacer notar que los tres dobles enlaces del benceno están deslocalizados, disociados y estabilizados por resonancia. Es decir, no "funcionan" como un doble enlace normal sino que al estar alternados, esto es, uno sí y uno no, proporcionan a la molécula sus características tan especiales. Cada carbono presenta en el benceno hibridación sp2. Estos híbridos se usarán tanto para formar los enlaces entre carbonos como los enlaces entre los carbonos y los hidrógenos. Cada carbono presenta además un orbital Pz adicional perpendicular al plano molecular y con un electrón alojado en su interior, que se usará para formar enlaces pi.

El cloro y el bromo dan derivados por sustitución de uno o más hidrógenos del benceno, que reciben el nombre de haluros de arilo.
C6H6 + Cl2 → C6H5Cl (Clorobenceno) + HCl
C6H6 + Br2 → C6H5Br (Bromobenceno) + HBr
La halogenación está favorecida por las bajas temperaturas y algún catalizador, como el hierro, el tricloruro de aluminio u otro ácido de Lewis, que polariza al halógeno para que se produzca la reacción. En el caso del bromobenceno se utiliza FeBr3 como catalizador.1

[editar]Sulfonación

Cuando los hidrocarburos bencénicos se tratan con , que es una mezcla de [[]] (H2SO4) y [] (SO3), se forman compuestos característicos que reciben el nombre . El electrófilo que reacciona puede ser H2SO3+ o SO3.2 Es una reacción reversible.3
C6H6 + HOSO3H (SO3) ↔ C6H5SO3H (Ácido bencenosulfónico) + H2O

[editar]Nitración

El ácido nítrico fumante o una mezcla de ácidos nítrico y sulfúrico, denominada mezcla sulfonítrica, (una parte de ácido nítrico y tres de sulfúrico), produce derivados nitrados, por sustitución. El ácido sulfúrico absorbe el agua producida en la nitración, ya que es un deshidratante muy potente, y así se evita la reacción inversa:
C6H6 + HONO2 (H2SO4) → C6H5NO2 (Nitrobenceno) + H2O

[editar]Combustión

El benceno es inflamable y arde con llama fuliginosa, propiedad característica de la mayoría de los compuestos aromáticos y que se debe a su alto contenido en carbono.
C6H6 +15/2O2 → 6CO2 + 3H2O

[editar]Hidrogenación

El núcleo Bencénico, por catálisis, fija seis átomos de hidrógeno, formando el ciclohexano, manteniendo así la estructura de la cadena cerrada.

[editar]Síntesis de Friedel y Crafts (Alquilación)

El benceno reacciona con los haluros de alquilo, en presencia de cloruro de aluminio anhidro (AlCl3) como catalizador, formando homólogos.
C6H6 + CH3Cl → C6H5CH3 (tolueno) + HCl
El ataque sobre el anillo bencénico por el ion CH3 electrofilico es semejante al realizado por el ion Cl en la halogenación.

[editar]Síntesis de Wurtz–Fitting

Es una modificación de la de Wurtz de la serie grasa. Los homólogos del benceno pueden prepararse calentando una solución etérea de un halogenuro de alquilo y otro de arilo con sodio. Este método tiene la ventaja sobre el de Friedel–Crafts, de que se conoce la estructura del producto y puede introducirse fácilmente cadenas largas normales.
Derivados del benceno. Influencia orientadora de los elementos que sustituyen al benceno.
Cuando se introduce un segundo sustituyente y en un derivado del benceno del tipo C6H5X, la posición que ocupa Y depende del carácter electrónico del grupo X, que ya está presente en el núcleo. Los productos de la reacción pueden ser orto y para o meta disustituidos y eso depende de la velocidad de la reacción de sustitución en cada una de las tres posiciones.
Hay unas reglas de orientación:
  • Los grupos de la clase I (dadores de electrones o entregadores) orientan la sustitución a las posiciones orto y para. En esta clase pueden encontrarse alguno de los grupos que siguen, OH, NH2, Cl, Br, I, F, CH2CI, SH, C6H5, etc.
  • Los grupos de la clase II (aceptores de electrones) orientan la sustitución a la posición meta. En esta clase pueden incluirse: N02, SO3H, CN, COOH, CHO, etc.
Hay un método sencillo de orientación para los derivados disustituidos que fue establecido por Körner. Frecuentemente es llamado método 2,3,1 de Körner. Se basa en el principio de que la introducción de un tercer sustituyente en un compuesto para proporciona un producto trisustituido, en el isómero orto dos y en el meta tres. Körner aplicó este principio para establecer la orientación de los dibromobencenos isómeros. Nitró cada uno de ellos y examinó el número de productos nitrados. El isómero que dio un solo dibromo-nitrobenceno es elpara; el que dio dos derivados nitrados, el orto, y el tercero que dio tres, es el compuesto meta.

Fuente:

No hay comentarios:

Publicar un comentario